Policymakers' summary

The IPCC Working Groups on scientific analysis (Working Group I), impacts (Working Group II) and response strategies (Working Group III) were established in November 1988 and proceeded to work in parallel under instructions from IPCC. The responsibility of Working Group II is to describe the environmental and socioeconomic implications of possible climate changes over the next decades caused by increasing concentrations of greenhouse gases.

The report of Working Group II is based on the work of a number of subgroups, using independent studies which have used different methodologies. Based on the existing literature, the studies have used several scenarios to assess the potential impacts of climate change. These have the features of:

(i) an effective doubling of $C 0_{2}$ in the atmosphere between now and 2025 to 2050 for a 'business-as-usual' scenario;

(ii) a consequent increase of global mean temperature in the range of 1.5° C to 4° - 5° C;

(iii) an unequal global distribution of this temperature increase, namely a smaller increase of half the global mean in the tropical regions and a larger increase of twice the global mean in the polar regions; and

(iv) a sea-level rise of about 0.3-0.5 m by 2050 and about 1 m by 2100, together with a rise in the temperature of the surface ocean layer of between 0.2° and 2.5° C.

These scenarios pre-date, but are in line with, the recent assessment of Working Group I which, for a 'business-as-usual' scenario (scenario A in Working Group I Report) has estimated the magnitude of sea-level rise at about 20 cm by 2030 and about 65 cm by the end of the next century. Working Group I has also predicted the increase in global mean temperatures to be about 1° C above the present value by 2025 and 3° C before the end of the next century.

Any predicted effects of climate change must be viewed in the context of our present dynamic and changing world. Large-scale natural events such as El Nino can cause significant impacts on agriculture and human settlement. The predicted population explosion will produce severe impacts on land use and on the demands for energy, fresh water, food and housing, which will vary from region to region according to national incomes and rates of development. In many cases, the impacts will be felt most severely in regions already under stress, mainly the developing countries. Human-induced climate change due to continued uncontrolled emissions will accentuate these impacts. For instance, climate change, pollution and ultraviolet-B radiation from ozone depletion can interact, reinforcing their damaging effects on materials and organisms. Increases in atmospheric concentrations of greenhouse gases may lead to irreversible change in the climate which could be detectable by the end of this century.

Comprehensive estimates of the physical and biological effects of climate change at the regional level are difficult. Confidence in regional estimates of critical climatic factors is low. This is particularly true of precipitation and soil moisture, where there is considerable disagreement between various general circulation model and palaeoanalog results. Moreover, there are several scientific uncertainties regarding the relationship between climate change and biological effects and between these effects and socioeconomic consequences.

This report does not attempt to anticipate any adaptation, technological innovation or any other measures to diminish the adverse effects of climate change that will take place in the same time frame. This is especially important for heavily managed sectors, eg agriculture, forestry and public health. This is one of the responsibilities of Working Group III.

Finally, the issue of timing and rates of change need to be considered; there will be lags between:

i) emissions of greenhouse gases and doubling of concentrations;

ii) doubling of greenhouse gas concentrations and changes in climate;

iii) changes in climate and resultant physical and biological effects; and

iv) changes in physical and ecological effects and resultant socioeconomic (including ecological)

consequences. The shorter the lags, the less the ability to cope and the greater the socioeconomic impacts.

There is uncertainty related to these time lags. The changes will not be steady and surprises cannot be ruled out. The severity of the impacts will depend to a large degree on the rate of climate change.

Despite these uncertainties, Working Group II has been able to reach some major conclusions, which are:

Agriculture and forestry

Sufficient evidence is now available from a variety of different studies to indicate that changes of climate would have an important effect on agriculture and livestock. Studies have not vet conclusively determined whether, on average, global agricultural potential will increase or decrease. Negative impacts could be felt at the regional level as a result of changes in weather and pests associated with climate change, and changes in groundlevel ozone associated with pollutants, necessitating innovations in technology and agricultural management practices. There may be severe effects in some regions, particularly decline in production in regions of high present-day vulnerability that are least able to adjust. These include Brazil, Peru, the Sahel Region of Africa, Southeast Asia, the Asian region of the USSR and China. There is a possibility that potential productivity of high and mid latitudes may increase because of a prolonged growing season, but it is not likely to open up large new areas for production and it will be mainly confined to the Northern Hemisphere.

Patterns of agricultural trade could be altered by decreased cereal production in some of the currently high-production areas, such as Western Europe, southern US, parts of South America and western Australia. Horticultural production in mid-latitude regions may be reduced. On the other hand, cereal production could increase in northern Europe. Policy responses directed to breeding new plant cultivars, and agricultural management designed to cope with changed climate conditions, could lessen the severity of regional impacts. On balance, the evidence suggests that in the face of estimated changes of climate, food production at the global level can be maintained at essentially the same level as would have occurred without climate change; however, the cost of achieving this is unclear. Nonetheless, climate change may intensify difficulties in coping with rapid population growth. An increase or change

in UV-B radiation at ground level resulting from the depletion of stratospheric ozone will have a negative impact on crops and livestock.

The rotation period of forests is long and current forests will mature and decline during a climate in which they are increasingly more poorly adapted. Actual impacts depend on the physiological adaptability of trees and the host-parasite relationship. Large losses from both factors in the form of forest declines can occur. Losses from wild-fire will be increasingly extensive. The climate zones which control species distribution will move poleward and to higher elevations. Managed forests require large inputs in terms of choice of seedlot and spacing, thinning and protection. They provide a variety of products from fuel to food. The degree of dependency on products varies among countries, as does the ability to cope with and to withstand loss. The most sensitive areas will be where species are close to their biological limits in terms of temperature and moisture. This is likely to be, for example, in semi-arid areas. Social stresses can be expected to increase and consequent anthropogenic damage to forests may occur. These increased and non-sustainable uses will place more pressure on forest investments, forest conservation and sound forest management.

Natural terrestrial ecosystems

Natural terrestrial ecosystems could face significant consequences as a result of the global increases in the atmospheric concentrations of greenhouse gases and the associated climatic chan-Projected changes in temperature and preges. cipitation suggest that climatic zones could shift several hundred kilometres towards the poles over the next fifty years. Flora and fauna would lag behind these climatic shifts, surviving in their present location and, therefore, could find themselves in a different climatic regime. These regimes may be more or less hospitable and, therefore, could increase productivity for some species and decrease that of others. Ecosystems are not expected to move as a single unit, but would have a new structure as a consequence of alterations in distribution and abundance of species.

The rate of projected climate changes is the major factor determining the type and degree of climatic impacts on natural terrestrial ecosystems. These rates are likely to be faster than the ability of some species to respond and responses may be sudden or gradual.

Some species could be lost owing to increased stress leading to a reduction in global biological

diversity. Increased incidence of disturbances such as pest outbreaks and fire are likely to occur in some areas and these could enhance projected ecosystem changes.

Consequences of $C 0_2$ enrichment and climate change for natural terrestrial ecosystems could be modified by other environmental factors, both natural and man-induced (eg by air pollution).

Most at risk are those communities in which the options for adaptability are limited (eg montane, alpine, polar, island and coastal communities, remnant vegetation, and heritage sites and reserves) and those communities where climatic changes add to existing stresses.

The socioeconomic consequences of these impacts will be significant, especially for those regions of the globe where societies and related economies are dependent on natural terrestrial ecosystems for their welfare. Changes in the availability of food, fuel, medicine, construction materials and income are possible as these ecosystems are changed. Important fibre products could also be affected in some regions.

Hydrology and water resources

Relatively small climate changes can cause large water resource problems in many areas, especially arid and semi-arid regions and those humid areas where demand or pollution has led to water scarcity. Little is known about regional details of greenhouse gas-induced hydrometeorological change. It appears that many areas will have increased precipitation, soil moisture and water storage, thus altering patterns of agricultural, ecosystem and other water use. Water availability will decrease in other areas, a most important factor for already marginal situations, such as the Sahelian zone in Africa. This has significant implications for agriculture, for water storage and distribution, and for generation of hydroelectric power. In some limited areas, for example, under the assumed scenario of a 1°C to 2°C temperature increase, coupled with a 10% reduction in precipitation, a 40-70% reduction in annual runoff could occur. Regions such as Southeast Asia, that are dependent on unregulated river systems, are particularly vulnerable to hydrometeorological change. On the other hand, regions such as the western USSR and western United States that have large regulated water resource systems are less sensitive to the range of hydrometeorological changes in the assumed greenhouse scenario.

In addition to changes in water supply, water demand may also change through human efforts to conserve, and through improved growth efficiency of plants in a higher CO, environment. Net socioeconomic consequences must consider both supply and demand for water. Future design in water resource engineering will need to take possible impacts into account when considering structures with a life span to the end of the next century. Where precipitation increases, water management practices, such as urban storm drainage systems, may require upgrading in capacity. Change in drought risk represents potentially the most serious impact of climate change on agriculture at both regional and global levels.

Human settlements: the energy, transport, and industrial sectors; human health; air quality and changes in ultraviolet-B radiation

The most vulnerable human settlements are those especially exposed to natural hazards, eg coastal or river flooding, severe drought, landslides, severe wind storms and tropical cyclones. The most vulnerable populations are in developing countries, in the lower income groups, residents of coastal lowlands and islands, populations in semi-arid grasslands, and the urban poor in squatter settlements, slums and shanty towns, especially in megacities. In coastal lowlands such as in Bangladesh, China and Egypt, as well as in small island nations, inundation due to sea-level rise and storm surges could lead to significant movements of people. Major health impacts are possible, especially in large urban areas, owing to changes in availability of water and food and increased health problems due to heat stress spreading of infections. Changes in precipitation and temperature could radically alter the patterns of vector-borne and viral diseases by shifting them to higher latitudes, thus putting large populations at risk. As similar events have in the past, these changes could initiate large migrations of people, leading over a number of years to severe disruptions of settlement patterns and social instability in some areas.

Global warming can be expected to affect the availability of water resources and biomass, both major sources of energy in many developing countries. These effects are likely to differ between and within regions with some areas losing and others gaining water and biomass. Such changes in areas which lose water may jeopardise energy supply and materials essential for human habitation and energy. Moreover, climate change itself is also likely to have different effects between regions on the availability of other forms of renewable energy such as wind and solar power. In developed countries some of the greatest impacts on the energy, transport and industrial sectors may be determined by policy responses to climate change such as fuel regulations, emission fees or policies promoting greater use of mass transit. In developing countries, climate-related changes in the availability and price of production resources such as energy, water, food and fibre may affect the competitive position of many industries.

Global warming and increased ultraviolet radiation resulting from depletion of stratosphere ozone may produce adverse impacts on air quality such as increases in ground-level ozone in some polluted urban areas. An increase of UV-B radiation intensity at the earth's surface would increase the risk of damage to the eye and skin and may disrupt the marine food chain.

Oceans and coastal zones

Global warming will accelerate sea-level rise, modify ocean circulation and change marine ecosystems, with considerable socioeconomic consequences. These effects will be added to present trends of rising sea-level, and other effects that have already stressed coastal resources, such as pollution and overharvesting. A 30-50 cm sea-level rise (projected by 2050) will threaten low islands and coastal zones. A i m rise by 2100 would render some island countries uninhabitable, displace tens of millions of people, seriously threaten low-lying urban areas, flood productive land, contaminate fresh water supplies and change coastlines. All of these impacts would be exacerbated if droughts and storms become more severe. Coastal protection would involve very significant costs. Rapid sea-level rise would change coastal ecology and threaten many important fisheries. Reductions in sea ice will benefit shipping, but seriously impact on ice-dependent marine mammals and birds.

Impacts on the global oceans will include changes in the heat balance, shifts in ocean circulation which will affect the capacity of the ocean to absorb heat and CO_2 , and changes in upwelling zones associated with fisheries. Effects will vary by geographic zones, with changes in habitats, a decrease in biological diversity and shifts in marine organisms and productive zones, including commercially important species. Such regional shifts in fisheries will have major socioeconomic impacts.

Seasonal snow cover, ice and permafrost

The global areal extent and volume of elements of the terrestrial cryosphere (seasonal snow cover, near-surface layers of permafrost and some masses of ice) will be substantially reduced. These reductions, when reflected regionally, could have significant impacts on related ecosystems and social and economic activities. Compounding these impacts in some regions is that, as a result of the associated climatic warming positive feedbacks, the reductions could be sudden rather than gradual.

The areal coverage of seasonal snow and its duration are projected to decrease in most regions, particularly at mid-latitudes, with some regions at high latitudes possibly experiencing increases in seasonal snow cover. Changes in the volume of snow cover, or the length of the snow cover season, will have both positive and negative impacts on regional water resources (as a result of changes in the volume and the timing of runoff from snowmelt); on regional transportation (road, marine, air and rail); and on recreation sectors.

Globally, the ice contained in glaciers and ice sheets is projected to decrease, with regional responses complicated by the effect of increased snowfall in some areas which could lead to accumulation of ice. Glacial recession will have significant implications for local and regional water resources, and thus impact on water availability and on hydroelectric power potential. Glacial recession and loss of ice from ice sheets will also contribute to sea-level rise.

Permafrost, which currently underlies 20-25% of the land mass of the Northern Hemisphere, could experience significant degradation within the next 40-50 years. Projected increases in the thickness of the freeze-thaw (active) layer above the permafrost and a recession of permafrost to higher latitudes and altitudes could lead to increases in terrain instability, erosion and landslides in those areas which currently contain permafrost. As a result, overlying ecosystems could be significantly altered and the integrity of man-made structures and facilities reduced, thereby influencing existing human settlements and development opportunities.

Future action

The results of the Working Group II studies highlight our lack of knowledge, particularly at the regional level and in areas most vulnerable to climate change. Further national and international research is needed on:

- regional effects of climate change on crop yields, livestock productivity and production costs;
- identification of agricultural management practices and technology appropriate for changed climate;
- factors influencing distribution of species and their sensitivity to climate change;
- initiation and maintenance of integrated monitoring systems for terrestrial and marine ecosystems;
- intensive assessment of water resources and water quality, especially in arid and semi-arid developing countries and their sensitivity to climate change;
- regional predictions of changes in soil moisture, precipitation, surface and subsurface runoff regimes and their interannual distributions as a result of climate change;
- assessment of vulnerability of countries to gain or loss of energy resources, particularly biomass and hydroelectric power in developing countries;
- adaptability of vulnerable human populations to heat stress and vector-borne and viral diseases;
- global monitoring of sea-level changes, particularly for island countries;
- identification of populations and agricultural and industrial production at risk in coastal areas and islands;
- better understanding of the nature and dynamics of ice masses and their sensitivity to climate change;
- integration of climate change impact information into the general planning process, particularly in developing countries; and
- development of methodology to assess sensitivity of environments and socioeconomic systems to climate change.
- Some of these topics are already being covered by existing and proposed programs and these will need continuing support. In particular, there are three core projects of the International Geosphere-Biosphere Program, namely:

Land-Ocean Interactions in the Coastal Zone

Biosphere Aspects of the Hydrological Cycle

Global Change Impact on Agriculture and Society

that will provide valuable data in the coming years.